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Irrational numbers on the number line – where are they?
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This paper reports part of an ongoing investigation into the understanding of
irrational numbers by prospective secondary school teachers. It focuses on the
representation of irrational numbers as points on a number line. In a written
questionnaire, followed by a clinical interview, participants were asked to indicate
the exact location of the square root of 5 on a number line. The results suggest
confusion between irrational numbers and their decimal approximation and
overwhelming reliance on the latter. Pedagogical suggestions are discussed.

1. Introduction

Can the exact location of
ffiffiffi

5
p

be found on the number line? In this article we consider
the answers of a group of preservice secondary school teachers to this question,
in light of their general conceptions of irrational numbers and their representations.

This report is part of an ongoing investigation into the understanding
of irrational numbers. Previously we focused on formal and intuitive knowledge of
irrationality as well as on representations of irrational numbers [1, 2]. Here we limit
our focus to the geometric representation of irrational length as specified by a point
on a number line.

2. Background: snapshot from research literature

Prior research on irrational numbers is rather slim. A small number of researchers
who investigated students’ and teachers’ understanding of irrational numbers
reported the difficulty that participants have in identifying the set membership, that
is, recognizing numbers as either rational or irrational [3, 4], in providing appropriate
definitions for rational and irrational numbers [5], and in flexible use of different
representations [6].

Of particular interest here is the study of Arcavi et al. [7] related to their work on
using the history of mathematics to design pre-service and in-service teacher courses.
These researchers report several findings on teachers’ knowledge, conceptions, and/
or misconceptions regarding irrational numbers. One of the most striking discoveries
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from their study is that there is a widespread belief among teachers that irrationality
relies upon decimals. This study was conducted on 84 in-service teachers who
attended a summer teacher training programme related to a national mathematics
curriculum for junior high schools in Israel. Arcavi et al. [7] report that 70% of
teachers knew that the first time the concept of irrationality arose was before the
Common Era (Greeks). However, although the majority knew ‘when’ it arose, very
few also knew ‘how’ it arose. This became particularly apparent when they were
asked to order chronologically the appearance of three concepts: negative numbers,
decimal fractions, and irrationals. 55% of teachers (and an additional 10% did not
answer) indicated that decimal fractions preceded irrationals in the historical
development. The authors concluded that this not only indicated the lack of
knowledge about the relatively recent development of decimals, but more
importantly, it indicated that the origin of the concept of irrationality, although
associated with the Greeks, is conceived as relying upon decimals, and not connected
to geometry as occurred historically (commensurable and incommensurable lengths).
Arcavi et al. [7] point out that ‘the historical origins of irrationals in general, and
the connections to geometry in particular, can provide an insightful understanding
of the concept as well as teaching ideas for the introduction of the topic in the
classroom’ (p. 18). This particular connection to geometry is of our interest here.

As a commentary, we find it interesting to point out that the three concepts
mentioned in study [7] are generally introduced to students in the reverse order from
how they developed historically. The concept of irrationality received its first
proper theoretical treatment by Eudoxus around 400 BC, and it appears in Euclid’s
Elements [8]. On the other hand, decimals were introduced by Simon Stevin in his
De Thiende in 1585 [9]. Historically, the first formal introduction to negative
numbers appears in Introduction to Algebra by Leonard Euler in 1770.

3. Research setting

3.1. The task: show how you would find the exact location of
ffiffiffi

5
p

on the number line

The task was designed in order to investigate understanding of the geometric
representation of an irrational number. In particular, we were interested in what
means the participants would use in order to locate

ffiffiffi

5
p

on the number line precisely.
It is said that to every real number there corresponds exactly one point on the real
number line. One may find this difficult to believe if one has never seen an irrational
point located on the number line, especially considering the fact that the number line
is everywhere dense with rational numbers. Further, we included

ffiffiffi

5
p

in this item
rather than the ‘generic’

ffiffiffi

2
p

assuming that the latter would lead some participants
to automatic recall from memory, rather than construction.

The number line drawing given to students with this task was intentionally set in
the Cartesian plane with a visible grid to simplify the straightedge and compass
construction (i.e. there was no need to draw a perpendicular line at 2). It was
intended to aid in the invoking of the Pythagorean Theorem in efforts to construct
the required length. The expected response is shown in figure 1.

We were interested to see whether participants would use this conventional or
similar approach or whether they would resort to thinking in terms of decimal
expansions.

478 N. Sirotic and R. Zazkis
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3.2. Participants

Participants in this study were 46 preservice secondary school teachers enrolled in the
professional development course ‘Designs for Learning: Secondary Mathematics’.
They responded to the item above as part of a written questionnaire that included
several additional items related to irrationality. Following the completion of the
questionnaire 16 volunteers from the group participated in a clinical interview in
which their responses and general dispositions were probed further.

4. Analysis of responses

The geometric representation of irrational numbers was strangely absent from the
concept images of many participants. The common conception of real number line
appeared to be limited to rational number line, or even more strictly, to decimal
rational number line where only finite decimals receive their representations as
‘points on the number line’. This is in agreement with the practical experience that
finite decimal approximations are both convenient and sufficient, which could be the
source of these conflicts.

Table 1 summarizes the results of the written responses to the geometric
construction task.

The responses fall into five distinct categories: an exact location of the point using
the knowledge of Pythagorean Theorem, more or less fine decimal approximation,
very rough approximation (between 2 and 3), responses related to graphing of a
related function, and an outright claim that this is impossible to do. Next we
exemplify and examine some representatives of each category.

4.1. Geometric approaches

Ten participants (out of 46) used geometric approaches, nine of which we classified
as precise. We presented above what could be considered a conventional geometric
approach. Indeed, it appeared in the work of four participants. This is an example of
such a response:

. The length of the hypotenuse shown is
ffiffiffi

5
p

(see figure 2). Just rotate the segment
so it falls on the number line, then move it up on the line (horizontal translation 1
unit to the left).

0 1 2 3 54

12 + 22 = 5

5

Figure 1. Geometric construction of
ffiffiffi

5
p

.

Irrational numbers on the number line – where are they? 479
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Two other valid geometric approaches were found. One of them is a slight
variation of the previous response. Instead of determining the placement of

ffiffiffi

5
p

by
construction it uses a ‘ready made’ right triangle with the side lengths of 1 and 2.
Four participants gave the response such as this.

Make the hypotenuse h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 þ 22
p

¼
ffiffiffi

5
p

lie on the number line. (See figure 3.).
The other valid geometric approach is the familiar spiral of right triangles

constructed by successive applications of the Pythagorean Theorem with one of the
legs always equal to 1 and the other leg equal to the hypotenuse of the previously
constructed triangle. This construction, as demonstrated in figure 4, is a more
generalized version of the conventional geometric approach in the sense that a square
root of any whole number can be constructed in this way. It might not be the most
efficient construction, but it spares one from having to think about what two perfect
squares add up to the required square of the length of the hypotenuse. Only one
participant used this approach.

The next response is interesting. It uses geometric approximation as shown in
figure 5. The figure was accompanied by the following note: ‘Area A¼Area B, where
A is a square.

ffiffiffi

5
p

�
ffiffiffi

5
p

¼ 5� 10. This solution seems to involve ‘eye-balling’ when the
partial pieces in square A will make a whole squared unit.

4.2. Numerical approaches

Next we present a range of responses from the written part, arranged by the degree of
accuracy. Twenty-four participants (over 52%) offered an approach based on the

Table 1. Quantification of results for the geometric construction of
ffiffiffi

5
p

(n¼ 46).

Response category Number of participants [%]

Exact, using Pythagorean Theorem 9 [19.6%]
Decimal approximation using one
or more digits after the decimal point

18 [39.2%]

Very rough approximation, i.e. ‘between 2 and 3’ 6 [13%]
Other response (for example,
using graphs of f(x)¼

ffiffiffi

x
p

or f(x)¼ x2�5)
6 [13%]

Responses arguing ‘you can’t’ 4 [8.7%]
No response 3 [6.5%]

Figure 2. Alternative geometric approach to construct
ffiffiffi

5
p

.

480 N. Sirotic and R. Zazkis
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0 1 32 4 5

Length=1
Length=2

Figure 3. Locating
ffiffiffi

5
p

by a ‘ready-made’ right triangle.

1
1

1

1

1

5

2

3

Figure 4. Construction of
ffiffiffi

5
p

using successive triangles.

0 1 32 54

A

B

Figure 5. Locating
ffiffiffi

5
p

by ‘eye-balling’ the areas.

Irrational numbers on the number line – where are they? 481
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decimal expansion of
ffiffiffi

5
p

. We start with those who offered a very

rough approximation, and end with those who demonstrated a genuine striving for

accuracy.

. Some participants circled a ‘big blob’ around the area of expected location and

said ‘somewhere around here’.

�
ffiffiffi

4
p ffiffiffi

5
p ffiffiffi

6
p ffiffiffi

7
p ffiffiffi

8
p ffiffiffi

9
p

# #

¼ 2 ¼ 3

Therefore, between 2 and 3.

. Somewhere between 2 and 3. I have no idea of the exact location, but it’s closer to

2 than to 3.
. I used my calculator and found that

ffiffiffi

5
p

� 2.23. Also
ffiffiffi

5
p

¼ 51/2. To plot the point I

found the midpoint between 2 and 3, then between 2 and 2.5, then plotted
ffiffiffi

5
p

roughly at 2.25.
. There are 5 whole numbers between 4 and 9 (perfect squares), and since 5 comes

after 4 it will be 1/5 the way between 2 and 3.

In this response we note an example of ‘overgeneralization of linearity’ [10],

a response that stems from what can be seen to hold true in linear relationships.

In particular, the location of
ffiffiffi

5
p

is said to be obtainable using a linear interpolation

between the two neighbouring perfect squares.

. Divide the section between 2 and 3 into 10 equal parts, find the two neighbouring

tick-marks that correspond to just below and just above 5 when squared.

Then divide this segment into 10 parts and repeat the process until you get better

and better approximation.
. Closest perfect square is 4,

ffiffiffi

4
p

¼ 2, so it is a little over 2. For greater accuracy,

we would try more digits.

2:3� 2:3 ¼ 5:29 ðtoo highÞ
2:2� 2:2 ¼ 4:84 ðtoo lowÞ

2:23� 2:23 ¼ 4:9729 ðtoo lowÞ
2:24� 2:24 ¼ 5:0176 ðtoo highÞ

2:238� 2:238 ¼ 5:008644 ðtoo highÞ
2:237� 2:237 ¼ 5:004169 ðstill too highÞ
2:236� 2:236 ¼ 4:99696 ðtoo lowÞ

4.3. Function-graph approach

This type of response was found among three participants. These approaches assume

what is to be found; that is to say, they assume the availability of an accurate graph,

from which the required length would be simply read off, instead of finding a way to

construct such length. It should be noted that one of the three participants who offered

this kind of response admitted his doubts about the validity of such an approach.

. Using functions, such as a sketch of f(x)¼ x2�5 and then looking at the zero of

this function x2�5¼ 0. A statement ‘if my graph is absolutely accurate, I will find

the exact location’ accompanied this approach.

482 N. Sirotic and R. Zazkis



D
ow

nl
oa

de
d 

By
: [

Si
m

on
 F

ra
se

r U
ni

ve
rs

ity
] A

t: 
00

:1
5 

1 
Ju

ne
 2

00
7 

. Similar to the above, only using f(x)¼
ffiffiffi

x
p

and then looking at the value of this
function at x¼ 5 on the graph (the ordinate distance).

4.4. Impossible?

Some participants questioned the validity of the assignment. Most likely the word
‘exact’ triggered these kinds of responses.

.
ffiffiffi

1
p

¼ 1,
ffiffiffi

2
p

� 1:4,
ffiffiffi

3
p

� 1:7,
ffiffiffi

4
p

¼ 2,
ffiffiffi

5
p

� 2:3
. I don’t think you can find the exact location of

ffiffiffi

5
p

looking at the number line
because it is a huge decimal form number. I do believe there is a way by using
calculus, but I’m not sure how to do it.

. This is a trick question, as
ffiffiffi

5
p

is irrational, it cannot be placed exactly on the
number line, because its digits are infinite.

. Can I find the exact location without knowing the rest of 1 digits?

. You can’t.

. Divide on calculator. There is no exact point like that.

4.5. Real number line versus rational number line

Since only 9 out of 46 prospective teachers (19.6%) were able to locate the
ffiffiffi

5
p

on the
number line accurately, we investigated what may be the reason for these difficulties.
A rather striking observation is that the vast majority of participants perceive the
number line as a rational number line. It turns out that those arguing ‘you can’t’ and
those that used a more or less fine decimal approximation hold this perception.
This can be concluded from the interviews where we probed for a precise, not
approximate, location of

ffiffiffi

5
p

. Under such demand, all participants that previously
offered a decimal approximation later concluded that it cannot be done. In other
words, the common opinion was that it must be rounded before it can be located.

Next, we look at a range of responses from the clinical interviews that may shed
some light on why locating

ffiffiffi

5
p

is perceived to be so problematic.
(Responding to the question about whether

ffiffiffi

5
p

can be found on the number line
precisely)

Anna: No, because we don’t know the exact value, because 0.0 bigillion
numbers ending with 5 is smaller than 0.0 bigillion numbers ending
with 6. They’re two different numbers, right, so because it never ends

we can never know the exact value.
Kyra: Yeah, yeah, like you would never be able to finally say okay, this is

where it is, because there are still more numbers that you’re reading

off your irrational number. But if you’re using this scale of, you
know, 1, between 1 and 2 is 2 cm or something, there’s only so
much precision that you can make with that point that you draw on
there, like I can’t make it as precise as an irrational number or, you
know . . .

4.6. Finding the precise location of rational numbers

From these excerpts it is evident that part of the difficulty lies in the infinite digits.
To confirm that it is not the irrationality itself, but the fact that there are infinitely

Irrational numbers on the number line – where are they? 483
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many digits in the decimal expansion, the interviewer enquired about the precise
placement of rational numbers.

Interviewer: How about 1/3, can you find the location of 1/3 on a number line?
Anna: On a number line?

Interviewer: Yeah . . .
Anna: Yeah, it would be, well okay you could divide, 1 divided by 3 and get

that standard 0.3 repeating . . ., oh but that doesn’t end either. Okay,
(pause) um, I think because we know that the 3 will never change, do
we really know, I don’t know, because it repeats. Like how do we not
know that in the one millionth decimal place it’s a 4 or something, or
0 or another number, I don’t know. But because that we assume that
3 repeats always, we can like sort of cut it off and round it.

Interviewer: Does that mean that we can’t really find the exact location?
Anna: No, it’s going to be somewhere in between 0.3 repeated and 0.3

repeated and then 4.
Interviewer: Somewhere in between?

Anna: But, no (laugh) I guess not, because it is a different number, like by
stopping the repetition of a decimal you’re like cutting off its value.
Like you’re assuming it has a specific value, when in actuality it
doesn’t have, in reality it doesn’t.

Similary, the interview with William suggests that the number line is perceived in
a limited sense, as containing only terminating decimals. That is to say, the number
line is reduced to the common ruler as used in everyday life.

William: I can find approximate position probably, exact position like I’d
probably have to round it off at some point, and then come up with an
approximate position, 0.334, something like that, depending on how I
could, you want it, let’s say you want it accurate to the ten hundredth
place, a 1,000th place, I would round it off to that place and . . .

Further in the interview there is a discussion about how this would be done,
which leads into an inquiry about what it is that makes the breaking of the unit into
10 equal pieces easier than breaking it into three pieces.

William: That I know, I can put a ruler there and I know, that’s easy. 10 can be
done with a ruler, I can also do it with the compass . . . (here William
tries showing that a unit can be broken into 10 equal parts using the
compass, but does not succeed) . . . I don’t know how, but I think there
is a distinct possibility. The ruler is the simplest, and on ruler you
don’t see the, let’s say 1 cm divided into 3 parts, that’s again divided
into 10 parts. Anytime I have to do that like 3.33, I would, I normally
approximate, just approximate the 3 . . ..

It should be noted that William’s understanding of irrational numbers was one
of the weakest of all the prospective teachers that we interviewed. It would be very
difficult to build the concept of irrationality from William’s concept image of
rational numbers. Although rational approximations are often sufficient for most
practical applications, we see this as an extreme example of the number line being
reduced to an ordinary ruler, where common fractions that have infinite repeating
decimals cease to exist.

484 N. Sirotic and R. Zazkis
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4.7. From numerical to geometric approach

As noted earlier the most common approach was using decimal approximation.
The Pythagorean Theorem was seldom invoked by the question. We were curious to

find out if this is just because it did not come to mind at the time the written part was

administered, or whether there is a deeper issue. It turns out that although the
prospective teachers are well acquainted with the theorem they would generally use it

only for finding the unknown length in a given right triangle, and not for the purpose
of constructing a desired length. In the excerpt that follows, the interviewer prompts

Steve to consider a more geometric approach, and even shows how this can be done
in the case of

ffiffiffi

2
p

.

Interviewer: Okay, and next question. Um, how would you find the exact location
of square root of 5 on the number line?

Steve: Okay, so again without using a calculator?
Interviewer: Yeah, without.

Steve: Um, what roughly find the, the two closest perfect squares so root 4
is 2, and root 9 is 3, so it’s going to be somewhere between 2 and 3,

so I guess I would then try like 2.2 and multiply it together to see

whether it’s 5, or whether it’s lower, so I guess I’d just try different
numbers, try multiplying different numbers together, and see how

close to root 5 . . .
Interviewer: That would be quite tedious without a calculator, right?

Steve: Yeah, yeah.
Interviewer: How about a more geometric approach?
[interviewer introduces the idea of finding

ffiffiffi

2
p

as a hypotenuse of an isosceles

right-angle triangle with side of 1]
Steve: Oh okay, oh that’s interesting.

Interviewer: Um hm, so I’m just trying to see if we can also do something
geometric to find the exact location of square root of 5, because the

other method would work perfectly fine, but it would be an
approximation only and it would be quite tedious.

Steve: Um hm, um hm, so how can you come up with a square root of 5,

um, (pause)
Interviewer: Always just say, you know, I’ll want to skip that . . .

Steve: Well it’s not that I want to skip, it would just take me a long time to

think about number combinations that come to root 5 . . .
Interviewer: In what way combinations are you talking about?

Steve: Well, you know, that works for the 45-45-90 triangle, root 2 does
and you know, root 3 can work for the 60-30-90, but I’d have to,

I guess I’d have to find out a ratio that used root 5. Yeah,

I couldn’t figure out the answer just looking at it . . . It would be
really hard for me to do without a calculator.

Upon the prompting, Steve invokes the trigonometric ratios for some commonly

used right triangles that students are expected to memorize in high school, failing to

recognize that these trigonometric ratios have been derived using the Pythagorean
Theorem in the first place. The fact is, only 20% of the participants

were able to invoke their knowledge of the theorem in order to address the
presented task. Furthermore, the eliciting questions at the time of the interviews still

Irrational numbers on the number line – where are they? 485
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did not draw out or assist in evoking the theorem from the participants’
concept image.

On this basis, we suggest that the knowledge of the Pythagorean Theorem is
an inert kind of knowledge for a great majority of our prospective secondary
mathematics teachers. We see this as a symptom of two general issues surrounding
the present state of mathematics education: one, the trend of weakening of geometry
in school curriculum, and two, the fragmentation of the curriculum. In other words,
the knowledge required to be used in any particular unit of study is limited to what is
explicitly approached in that unit and cross-topics connections are not encouraged.
If some topic (we use the Pythagorean Theorem and its applications as an example)
has already received its due share in the curriculum, it no longer needs to occupy
students’ time or minds. A limited exposure to geometry coupled with an infrequent
need to apply the theorem may be responsible for the fact that the desired approach
in responding to the construction question was found to be so rare.

4.8. Precise location: What can be gained?

Among those participants who were able to find the precise location of
ffiffiffi

5
p

we found
there was a sense of security that such a number indeed existed. Their understanding
seemed much more robust. Perhaps we could even say that the availability of a
geometric representation aided them in the life cycle of concept development towards
its final stage of encapsulation. This is in contrast with many others who offered the
decimal approximation approach, where the number was seen as a process, stuck in
its making forever. The following excerpt with Stephanie exemplifies this view.

Stephanie: Yeah. Okay, what I am thinking of, because somehow you can build
this triangle and this triangle exists, this is another interpretation of
the irrational number, so this segment represents the length of that
hypotenuse, represents square root of 5, because this triangle exists.
So it should be something what is, like we can touch, I don’t know.

Finally, we present an excerpt from the interview with Claire, who communicated
to us why she thinks teachers should not be satisfied with approximations.

Claire: Now, of course a point does not have dimensions. So on the number
line you don’t have actually the lead of the pencil, it’s still a
dimension, although it’s not. So intuitively you can say yes, it’s there,
a number can be represented in this way . . .As an answer, if you have
the construction with a compass, yes you assume that construction is
exact and precise, yes, 12þ 12¼ 2 and square root of 2 is the exact
representation of square root of 2 irrational number, not how we are
used to say 1.41, which is an estimation, and approximate answer.

Interviewer: And what do you think is there, what’s the importance of us um
having a student understand this, you know, exact and approximate,
when they always work with approximation? What is the value for
you? Do you think they should learn about these things?

Claire: I still tend to believe that it’s better to work with the exact value,
rather than an estimation, instead of, I’m the person that I like to
speak with the terminology in math, so saying that pi is 3.14 ends up,
if you don’t insist in elementary school in grade 7, 8 whatever, saying

486 N. Sirotic and R. Zazkis
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that it’s not, it’s only estimation of the number, but you explain the
pi like being, you know, some, the lengths of the circle and whatever,
I think it’s very important the terminology here, to understand that
they have a specific value.

Interviewer: Okay . . .
Claire: So I agree with not being careless about this. When it’s exact value,

it’s exact value, when it’s a rounding of a number, it’s a rounding of
a number in estimation.

At some point students need to become aware that there is a profound distinction
between the exact value of an irrational number and its rational approximation.
We suggest this is better done sooner than later. Our findings indicate deep
misconception and apparent confusion of some students who do not understand
the distinction between � and 22=7, as an example of an irrational number and
its rational approximation. A similar confusion was reported previously by
Arcavi et al. [7], where labelling 22=7 an irrational number was a common error.
Also, students need to be aware of the effects of premature substitution of irrational
values by their rational approximations in partial results during calculations, both in
the sense that this complicates the calculations and creates problems of cumulative
error. However, students’ awareness will be hard to achieve if it is not within an
active repertoire of their teachers.

5. Pedagogical considerations

A significant part of school curriculum is focused on the notion of number.
The notion of a number line appears early in elementary school and aids in ordering
numbers and introducing integers and operations with integers. As rational numbers
are dense, the idea that they do not ‘cover’ the continuous number line presented a
challenge to mathematicians. The formalization of this idea and formal definition of
real numbers is presented through the introduction of Dedekind cuts and is beyond
what is normally presented in school.

However, in the school curriculum today we expect students to accept, intuitively,
the idea of one-to-one correspondence between real numbers and points on a number
line, and rely on explaining real numbers as ‘all the points on the number line’. It is
important to be aware of the fact that 2500 years have passed from the ‘discovery’ of
irrational numbers as lengths to the formal construction of the set of real numbers.
It would be unreasonable to expect that what took centuries of mathematicians’
work to develop could be acquired by students in a few sessions of classroom
exposure.

The concept of an irrational number is inherently difficult; yet, understanding of
irrational numbers is essential for the extension and reconstruction of the concept
of number from the system of rational numbers to the system of real numbers.
Therefore a careful didactical attention is essential for proper development of this
concept.

We believe that emphasis on decimal representation of irrational numbers, be it
explicit or implicit, does not contribute to the conceptual understanding of
irrationality. And with irrational numbers one is faced with infinite decimal numbers
of a special kind – numbers that cannot be written down or known fully.
On this note, Stewart [11] challenges the wisdom of calling irrational numbers real;

Irrational numbers on the number line – where are they? 487



D
ow

nl
oa

de
d 

By
: [

Si
m

on
 F

ra
se

r U
ni

ve
rs

ity
] A

t: 
00

:1
5 

1 
Ju

ne
 2

00
7 

that is, how can something be real if it cannot even be written down fully? In this

sense, geometric representation should come almost as a relief in the process of

learning about irrationals.
To be able to capture infinite decimals with something finite and concrete, and

as simple as a point on the number line, even if this is only possible for a certain

category of irrationals (constructible lengths), should help in taming the difficult

notion of irrationality. Moreover, the geometric representation of irrational number

may well turn out to be a very powerful and indispensable teaching tool for

encapsulating a process into an object, especially in the case where the learner is on

the verge of the reification stage in the development of the concept of irrationality.

It is both accessible to the learner (required is the knowledge of the Pythagorean

Theorem) and yet revealing of the idea that to every number there corresponds a

(single) point on the number line. As such, it is our contention that placing more

emphasis on the geometric representation of irrational numbers can aid students in

two ways. First, they are likely to become more sensitive to the distinction between

the irrational number and its rational approximation. Secondly, it is likely to help

them encapsulate the concept of irrationality by drawing their attention to yet

another representation of the object (point on the number line, an irrational distance

from 0) and away from the never-ending process of construction in time, as often

perceived through the infinite decimal representation. However, if teachers

themselves do not possess the relevant content knowledge, achieving understanding

in students is unlikely.
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